

2022

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- · Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks: 100

Section I – 10 marks (pages 2 – 4)

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II – 90 marks (pages 5 – 11)

- Attempt Questions 11 16
- · Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

- 1 What is the length of the vector -2i 3j + 6k?
 - A. 1
 - B. 7
 - C. 11
 - D. 49
- What is the converse of the following statement?

"If a point is in the first quadrant, then its coordinates are positive".

- A. If a point is not in the first quadrant, then its coordinates are positive.
- B. If a point is not in the first quadrant, then its coordinates are not positive.
- C. If the coordinates of a point are positive, then the point is in the first quadrant.
- D. If the coordinates of a point are not positive, then the point is not in the first quadrant.
- Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an Argand diagram. What is the rotation?
 - A. Clockwise by $\frac{\pi}{4}$ radians.
 - B. Clockwise by $\frac{\pi}{2}$ radians.
 - C. Anticlockwise by $\frac{\pi}{4}$ radians.
 - D. Anticlockwise by $\frac{\pi}{2}$ radians.

- 4 Which expression is equal to $\int \cot x \, dx$?
 - A. $\ln|\sin x| + c$
 - B. $\frac{\cot^2 x}{2} + c$
 - C. $\csc^2 x + c$
 - D. $\ln|\csc x| + \cot x + c$
- What is the angle, to the nearest degrees, between the vectors $\mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ and $-2\mathbf{i} 4\mathbf{j} + 6\mathbf{k}$?
 - A. 0
 - B. 119
 - C. 136
 - D. 180
- 6 Which expression is equal to $\int \frac{1}{\sqrt{-x^2 + 6x 5}} dx$?
 - A. $\sin^{-1}\left(\frac{x-3}{2}\right) + C$
 - B. $\cos^{-1}\left(\frac{x-3}{2}\right) + C$
 - C. $\ln \left| x 3 + \sqrt{(x-3)^2 + 4} \right| + C$
 - D. $\ln \left| x 3 + \sqrt{(x-3)^2 4} \right| + C$
- 7 Consider the statement:

"If my computer is not working, then I cannot finish my homework".

What is the negation of the above statement?

- A. My computer is working, and I can finish my homework.
- B. My computer is working, but I cannot finish my homework.
- C. My computer is not working, and I can finish my homework.
- D. My computer is not working, but I cannot finish my homework.

Which diagram best represents the solutions to the equation 8

$$\arg\left(\frac{z}{z-1+i}\right) = \pi ?$$

B.

C.

D.

9 A particle is moving in simple harmonic motion with period 3 and amplitude 2. Which is a possible expression for the velocity, v, of the particle?

A.
$$v = \frac{4\pi}{3} \cos\left(\frac{2\pi}{3}t\right)$$

B.
$$v = 2\cos\left(\frac{2\pi}{3}t\right)$$

$$C. v = \frac{2\pi}{3} \cos\left(\frac{\pi}{3}t\right)$$

D.
$$v = 2\cos\left(\frac{\pi}{3}t\right)$$

10 Which of the following statements is false?

A.
$$\forall x \in \mathbb{R}, x^2 \ge 0$$

B.
$$\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z}, m = n + 5$$

C.
$$\exists a \in \mathbb{R}, \forall x \in \mathbb{R}, ax = x$$

D.
$$\exists m \in \mathbb{Z}, \forall n \in \mathbb{Z}, m = n + 5$$

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer each question on the appropriate pages of the answer booklet. Extra paper is available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (16 marks) Use the pages labelled Question 11 in the answer booklet.

- (a) Consider the complex numbers w = -2 + 3i and z = 1 + i.
 - (i) Evaluate $\frac{1}{|w|}$.
 - (ii) Express $w\bar{z}$ in the form a + bi, where a and b are real numbers.
- (b) (i) Express $z = \sqrt{2} \sqrt{2}i$ in modulus-argument form.
 - (ii) Hence find z^{21} in the form a + bi, where a and b are real numbers. 2
- (c) Use integration by parts to find $\int x^3 \log_e x \, dx$.
- (d) (i) Find the real numbers a and b, such that $\frac{5x^2 3x + 13}{(x-1)(x^2 + 4)} = \frac{a}{x-1} + \frac{bx-1}{x^2 + 4}$.
 - (ii) Hence, find $\int \frac{5x^2 3x + 13}{(x-1)(x^2+4)} dx$.
- (e) Using the substitution $t = \tan \frac{x}{2}$, or otherwise, calculate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 3\sin x + 4\cos x}.$

Question 12 (16 marks) Use the pages labelled Question 12 in the answer booklet.

- (a) Consider the vectors $\underline{a} = \begin{bmatrix} -1 \\ -2 \\ 4 \end{bmatrix}$ and $\underline{b} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$.
 - (i) Find $\underline{a} \cdot \underline{b}$.
 - (ii) Find the vector projection of \underline{a} onto \underline{b} .
- (b) Consider two points P(-1,3,1) and Q(2,4,5) in three-dimensional space.
 - (i) Find the midpoint of *PQ*.
 - (ii) If P and Q are the endpoints of the diameter of a sphere, find a vector equation of the sphere.
- (c) Find the Cartesian equation of the line $\underline{r} = 3\underline{i} 4\underline{j} + \lambda(2\underline{i} + \underline{j})$.
- (d) Consider the following proposition:

"Suppose
$$x, y \in \mathbb{R}$$
. If $y^3 + yx^2 \le x^3 + xy^2$, then $y \le x$."

- (i) State the contrapositive of this proposition.
- (ii) Hence prove the above proposition is true. 2

Question 12 continues on page 7

Question 12 (continued)

(e) A projectile is fired from the origin O with initial velocity 12 ms^{-1} at an angle of 30° to the horizontal and experiences air resistance proportional to the velocity in both the x and y directions. The equations of motion are given by

$$\ddot{x} = -k\dot{x} \qquad \ddot{y} = -10 - k\dot{y}$$

$$\dot{x} = 6\sqrt{3}e^{-kt} \qquad \dot{y} = \frac{1}{k}[(10 + 6k)e^{-kt} - 10]$$

$$x = \frac{6\sqrt{3}}{k}(1 - e^{-kt}) \qquad y = \frac{10 + 6k}{k^2}(1 - e^{-kt}) - \frac{10}{k}t$$

where k is a positive constant. (Do NOT prove these results.)

(i) Show that the Cartesian equation of the flight path is given by

$$y = \frac{5+3k}{3k\sqrt{3}}x + \frac{10}{k^2}\ln\left(1 - \frac{kx}{6\sqrt{3}}\right)$$

2

(ii) Given that k = 0.1, find the maximum height reached in metres to 2 decimal places.

Question 13 (15 marks) Use the pages labelled Question 13 in the answer booklet.

(a) Varignon's theorem states that the midpoints of any quadrilateral join to form a parallelogram. Let *ABCD* be a quadrilateral and *EFGH* be the quadrilateral obtained by joining the midpoints of the edges of *ABCD*.

- (i) Show that $\overrightarrow{HE} = \frac{1}{2} \overrightarrow{DB}$.
- (ii) Hence prove Varignon's theorem, i.e. show that *EFGH* is a parallelogram. 1
- (b) Let $1, \omega, \omega^2$ be the cube roots of 1 and $\omega \neq 1$.
 - (i) State the values of ω^3 and $1 + \omega + \omega^2$.
 - (ii) Hence evaluate $(1 \omega)(1 \omega^2)(1 \omega^4)(1 \omega^5)(1 \omega^7)(1 \omega^8)$.
- (c) (i) Graph the locus of z if |z 2i| = 1.
 - (ii) Hence, or otherwise, find the maximum and minimum values of the argument of z.
- (d) Consider the geometric series $S_{2n} = 1 h + h^2 \dots + h^{2n}, \text{ where } 0 < h < 1.$

(i) Show that
$$S_{2n-1} < \frac{1}{1+h} < S_{2n}$$
.

- (ii) Integrate the previous result between h = 0 and h = x, where 0 < x < 1, and hence write down a polynomial inequality for $\log_e(1 + x)$.
- (iii) Use n = 3 to estimate the value of $\log_{e_4}^{5}$ to 4 significant figures. Show full working.

Question 14 (14 marks) Use the pages labelled Question 14 in the answer booklet.

- (a) Let $P(z) = z^8 \frac{5}{2}z^4 + 1$. The complex number w is a root of P(z) = 0.
 - (i) Show that iw and $\frac{1}{w}$ are also roots of P(z) = 0.
 - (ii) Hence, or otherwise, find all roots of P(z) = 0.
- (b) Find a unit vector that is perpendicular to both $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$.
- (c) A ball of mass 2 kilograms is thrown vertically upward from the origin with an initial speed of 8 metres per second. The ball is subject to a downward gravitational force of 20 newtons and an air resistance of $\frac{v^2}{5}$ newtons in the opposite direction to the velocity, v metres per second.

Hence, until the ball reaches its highest point, the equation of motion is

$$\ddot{y} = -\frac{v^2}{10} - 10,$$
 (Do NOT prove this.)

where *y* metres is its height.

- (i) Show that, while the ball is rising, $v^2 = 164e^{-\frac{y}{5}} 100$.
- (ii) Hence find the maximum height reached.
- (iii) Find how long the ball takes to reach this maximum height.
- (iv) Write down the equation of motion for the downwards journey. 1
- (v) How fast is the ball travelling when it returns to the origin?

Question 15 (15 marks) Use the pages labelled Question 15 in the answer booklet.

- (a) For $n = 0, 1, 2, ..., let I_n = \int_0^{\frac{\pi}{4}} tan^n \theta d\theta$.
 - (i) Show that $I_1 = \frac{1}{2} \ln 2$.
 - (ii) Show that for $n \ge 2$, $I_n + I_{n-2} = \frac{1}{n-1}$.
 - (iii) For $n \ge 2$, explain why $I_n < I_{n-2}$, and deduce that $\frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)}.$
 - (iv) By using the recurrence relation of part (ii), find I_5 and deduce that $\frac{2}{3} < \ln 2 < \frac{3}{4}$.
- (b) A particle moves in a straight line. Its displacement, x metres, after t seconds is given by

$$x = \sqrt{2}\sin\left(3t - \frac{\pi}{4}\right) + 3\sin(3t)$$

- (i) Prove that the particle is moving in simple harmonic motion. 2
- (ii) Find the amplitude and period of the motion.
- (iii) When is the first time the particle reaches the origin?

Question 16 (14 marks) Use the pages labelled Question 16 in the answer booklet.

(a) Find
$$\int \frac{\sqrt{25x^2 - 4}}{x} dx$$
.

- (b) Let \underline{m} and \underline{n} be two vectors such that $\underline{m} = a\underline{i} + b\underline{j} + c\underline{k}$ and $\underline{n} = \underline{i} + \underline{j} + \underline{k}$. 2 If a + b + c = 9, prove $a^2 + b^2 + c^2 \ge 27$, where $a, b, c \in \mathbb{R}$.
- (c) If a, b, c > 0, prove that $\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}$.
- (d) (i) If $y = x^k + (c x)^k$, where c > 0, k > 0, $k \ne 1$, show that y has a single stationary point between x = 0 and x = c.
 - (ii) Show that the stationary point is a maximum if k < 1 and a minimum if k > 1.
 - (iii) Hence show that if a > 0, b > 0, $a \ne b$, then; $\frac{a^k + b^k}{2} < \left(\frac{a+b}{2}\right)^k \text{ if } 0 < k < 1 \text{ and } \frac{a^k + b^k}{2} > \left(\frac{a+b}{2}\right)^k \text{ if } k > 1.$

End of paper

BAULKHAM HILLS HIGH SCHOOL

2022 YEAR 12 EXTENSION 2 TRIAL HSC SOLUTIONS

	Solution	Marks
Section I		1
1. B	$\sqrt{(-2)^2 + (-3)^2 + 6^2} = 7$	1
2. C	Converse of $P \to Q$ is $Q \to P$	1
3. D		1
	$\left \frac{1+i}{1-i} \times \frac{1+i}{1+i} \right $	
	$= \frac{1 + 2i + i^2}{1 - i^2}$	
	$=\frac{2i}{2}$	
	=i	
	\therefore An anti-clockwise rotation by $\frac{n}{2}$.	
4. A	$\int \cot x dx$	1
	$-\int \cos x dx$	
	$=\int \frac{\cos x}{\sin x} dx$	
	$= \ln \left \sin x \right + c$	
5. D	$\cos \theta = \frac{\underline{u}.\underline{v}}{ \underline{u} \underline{v} }$	1
	$\cos \theta = \frac{1 \times (-2) + 2 \times (-4) + (-3) \times 6}{\sqrt{1^2 + 2^2 + (-3)^2} \times \sqrt{(-2)^2 + (-4)^2 + 6^2}}$	
	$\sqrt{1^2 + 2^2 + (-3)^2} \times \sqrt{(-2)^2 + (-4)^2 + 6^2}$	
	$=\frac{-28}{\sqrt{14}\times\sqrt{56}}$	
	$-\frac{14}{\sqrt{14}} \times \sqrt{56}$	
	=-1	
	$\theta = 180^{\circ}$	
6. A	$-x^2 + 6x - 5 = -(x^2 - 6x + 5)$	1
	$=-[(x-3)^2-4]$	
	$=4-(x-3)^2$	
	$\frac{1}{dx}$	
	$\therefore \int \frac{1}{\sqrt{-x^2 + 6x - 5}} dx$	
	$= \int \frac{1}{\sqrt{2^2 - (x - 3)^2}} dx$	
	$=\sin^{-1}\left(\frac{x-3}{2}\right)+C$	

7. C	$\neg (P \rightarrow Q)$	1
	$ \neg (P \to Q) $ $ = \neg (\neg P \lor Q) $	
	$= \neg \neg P \land \neg Q$ $= P \land \neg Q$	
	$=P \land \neg Q$	
8. A	$\arg\left(\frac{z}{z-1+i}\right) = \pi$	1
	$\arg(z) - \arg(z - (1 - i)) = \pi$	
	\therefore The difference in angle is π .	
	\therefore z lies between $(0,0)$ and $(1,-1)$.	
9. A	Consider answer A:	1
	$v = \frac{4\pi}{3}\cos\left(\frac{2\pi}{3}t\right)$	
	$x = 2\pi \sin\left(\frac{2\pi}{3}t\right) + C$	
	∴Amplitude is 2 and Period is $\frac{2\pi}{\left(\frac{2\pi}{3}\right)} = 3$.	
	(B, C and D does not work).	
10. D	A) For every real number $x, x^2 \ge 0$. True B) For all integers n , there exist an integer m such that $m = n + 5$. True	1
	C)There exists a real number a for which $ax = x$ for every real number x . True	
	D) There exists an integer m , for all integers n such that $m = n + 5$. False	

Question	Solution	Mark	Comments
Section II			
11(a)(i)	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	1	1Mk: Provides
	$\frac{ w }{ w } - \frac{\sqrt{(-2)^2 + 3^2}}{\sqrt{13}} - \frac{\sqrt{13}}{\sqrt{13}}$		correct solution.
11(a)(ii)	$w\bar{z} = (-2+3i)(1-i)$ = -2 + 2i + 3i - 3i ²	2	2Mk: Provides
	$= -2 + 2i + 3i - 3i^2$		correct solution.
	= 1 + 5i		1Mk: Obtains
			correct \bar{z} .
11(b)(i)	$z = \sqrt{2} - \sqrt{2}i$	2	2Mk: Provides
	$ z = \sqrt{2+2} = 2$		correct solution.
	$ z = \sqrt{2+2} = 2$ & $\arg(z) = \tan^{-1}\left(\frac{-\sqrt{2}}{\sqrt{2}}\right) = -\frac{\pi}{4}$		1Mk: Obtains correct modulus or
	$\therefore z = 2\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$		argument.

11(b)(ii)	$z^{21} = 2^{21} \left(\cos \left(21 \times -\frac{\pi}{4} \right) + i \sin \left(21 \times -\frac{\pi}{4} \right) \right)$ $(De\ Moivre's\ Theorem)$ $= 2^{21} \left(\cos \left(-\frac{21\pi}{4} \right) + i \sin \left(-\frac{21\pi}{4} \right) \right)$ $= 2^{21} \left(\cos \left(\frac{3\pi}{4} \right) + i \sin \left(\frac{3\pi}{4} \right) \right)$ $= 2097152 \left(-\frac{1}{\sqrt{2}} + i \left(-\frac{1}{\sqrt{2}} \right) \right)$ $= -1048576\sqrt{2} + 1048576\sqrt{2}i$	2	2Mk: Provides correct solution. 1Mk: Uses De Moivre's Theorem correctly.
11(c)	$\int x^3 \ln x dx$ $u = \ln x v = \frac{1}{4} x^4$ $du = \frac{dx}{x} dv = x^3$ $= \left(\frac{1}{4} x^4\right) (\ln x) - \int \frac{1}{4} x^3 dx$ $= \frac{1}{4} x^4 \ln x - \frac{x^4}{16} + C$	2	2Mk: Provides correct solution. 1Mk: Attempts to use integration by parts.
11(d)(i)	$\frac{5x^2 - 3x + 13}{(x - 1)(x^2 + 4)} \equiv \frac{a}{x - 1} + \frac{bx - 1}{x^2 + 4}$ $= \frac{a}{x - 1} + \frac{bx - 1}{x^2 + 4}$ $= \frac{a(x^2 + 4) + (bx - 1)(x - 1)}{(x - 1)(x^2 + 4)}$ $\therefore a(x^2 + 4) + (bx - 1)(x - 1) = 5x^2 - 3x + 13$ When $x = 1$, $5a = 15$ $a = 3$ Equating the coefficient of x^2 gives $a + b = 5$ $b = 2$ $\therefore a = 3, b = 2$	2	2Mk: Provides correct solution. 1Mk: Obtains a or b correctly.
11(d)(ii)	$\int \frac{5x^2 - 3x + 13}{(x - 1)(x^2 + 4)} dx$ $= \int \frac{3}{x - 1} + \frac{2x - 1}{x^2 + 4} dx$ $= 3\ln x - 1 + \int \frac{2x dx}{x^2 + 4} - \int \frac{dx}{x^2 + 4}$ $= 3\ln x - 1 + \ln(x^2 + 4) - \frac{1}{2}\tan^{-1}\frac{x}{2} + C$	2	2Mk: Provides correct solution. 1Mk: Correctly integrates for a ln or inverse tan.

11(e)	$\frac{\pi}{2}$ dr	3	3Mk: Provides
	$\int_{0}^{2} \frac{dx}{5 + 3\sin x + 4\cos x}$		correct solution.
	$\int_{0}^{3} 5 + 3\sin x + 4\cos x$		2Mk: Integrates
	x		correctly.
	$Let t = \tan \frac{x}{2}$		1Mk: Obtains
	_		correct integrand
	$\therefore \frac{dt}{dx} = \frac{1}{2}\sec^2\frac{x}{2}$		in <i>t</i> .
	$=\frac{1}{2}(\tan^2\frac{x}{2}+1)$		
	$\frac{dt}{dx} = \frac{1}{2}(t^2 + 1)$		
	$\therefore \frac{2dt}{1+t^2} = dx$		
	When $x = \frac{\pi}{2}$, $t = 1$		
	When $x = 0$, $t = 0$		
	$ \therefore = \int_{0}^{1} \frac{2dt}{(1+t^{2}) \left[5 + 3 \left(\frac{2t}{1+t^{2}} \right) + 4 \left(\frac{1-t^{2}}{1+t^{2}} \right) \right] } $		
	$=\int_{0}^{1} \frac{2dt}{5+5t^{2}+6t+4-4t^{2}}$		
	$=\int_{0}^{1} \frac{2dt}{(t+3)^{2}}$		
	$=-2\left[\frac{1}{t+3}\right]_0^1$		
	$=-2\left(\frac{1}{4}-\frac{1}{3}\right)$		
	$=\frac{1}{6}$		

12(a)(i)	$a \cdot b = (-1)(3) + (-2)(-1) + (4)(2)$	1	1Mk: Provides
	=-3+2+8		correct solution.
	= 7		
12(a)(ii)	$ b = \sqrt{3^2 + (-1)^2 + 2^2}$	2	2Mk: Provides
	$= \sqrt{9+1+4}$		correct solution.
	$=\sqrt{9+1+4}$ $=\sqrt{14}$		1Mk: Obtains $ \underline{b} ^2$
	1		correctly.
	$proj_{\underline{b}}\underline{a} = \frac{\underline{a}.\underline{b}}{ \underline{b} \underline{b} }\underline{b}$		
	$=\frac{7}{\sqrt{14}\times\sqrt{14}}b$		
	$=\frac{1}{2}(3\underline{i}-\underline{j}+2\underline{k})$		
	$=\frac{3}{2}\underline{i}-\frac{1}{2}\underline{j}+\underline{k}$		
12(b)(i)	Midpoint = $\left(\frac{-1+2}{2}, \frac{3+4}{2}, \frac{1+5}{2}\right)$	1	1Mk: Provides correct solution.
	$=\left(\frac{1}{2},\frac{7}{2},3\right)$		
12(b)(ii)	Radius is the distance from midpoint to P:	2	2Mk: Provides
	$= \sqrt{\left(\frac{1}{2} + 1\right)^2 + \left(\frac{7}{2} - 3\right)^2 + (3 - 1)^2}$		correct solution. 1Mk: Obtains correct radius.
	$=\sqrt{\frac{13}{2}}$		
	Equation of the sphere:		
	$ \left r \begin{bmatrix} 0.5 \\ 3.5 \\ 3 \end{bmatrix} \right = \sqrt{\frac{13}{2}} $		
	Must be a vector equation.		
12(c)	$r = 3i - 4j + \lambda(2i + j)$	2	2Mk: Provides
	$\therefore x = 3 + 2\lambda$		correct solution. 1Mk: Attempts to
	$y = -4 + \lambda$		solve simultaneously
	$y+4=\lambda$		or finds the slope of the line.
	$\therefore x = 3 + 2(y + 4)$		the fine.
	$\therefore x - 2y - 11 = 0$		
	or $y = \frac{x}{2} - \frac{11}{2}$		

		$\int_{0}^{\infty} \frac{dx}{dx} = \int_{0}^{\infty} \frac{dx}{dx} $	
		$\int \frac{xy}{x^{2}} = \int \frac{1}{y} =$	
		$(8\sqrt{3})$ $\int_{1}^{1} e^{\sqrt{3}} \int_{1}^{1} \int_{1}^{1} e^{\sqrt{3}} \int_{1}^{1} $	
correct proof. IMk: Obtains correct t.		$\left(\frac{\varepsilon}{2}\right) - 1 = i\lambda - \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} - 1 = i\lambda - 3$ $\varepsilon = 0$	
ZMk: Provides	7	By contraposition $\therefore \text{ If } y \le x \text{ then } y^3 + yx^2 \le x^3 + xy^2$ $\therefore \text{ If } y \le x \text{ then } y^3 + yx^2 \le x^3 + xy^2$	(i)(e)(1)
correct algebraic method towards the inequality.		$y(x^2 + y^2) > x(x^2 + y^2) \left(\text{since } x^2 + y^2 > 0 \right)$ $y^3 + yx^2 > x^3 + xy^2 \text{as required.}$ $\therefore \text{ The contrapositive is true.}$	
2Mk: Provides correct solution. 1 Mk: Multiply both sides by $(x^2 + y^2)$ or	7	Proving the contrapositive is true. If $y > x$ then $y^3 + yx^2 > x^3 + xy^2$. $x < y$	(ii)(b)21
l Mk: Provides correct solution.	Į	Contrapositive is: If $y > x$, then $y^3 + yx^2 > x^3 + xy^2$	(i)(b)21

12(e)(ii)	Maximum height occurs when $\dot{y} = 0$:	3	3Mk: Provides
	$0 = \frac{1}{k} [(10 + 6k)e^{-kt} - 10]$		correct solution. 2Mk: Obtains
	$(10+6k)e^{-kt} = 10$		correct value for t or correct expression
	$e^{-kt} = \frac{10}{10+6k}$		for t.
	$10+6k$ $e^{-kt} = 1+0.6k$		1Mk: Attempts to find t when $\dot{y} = 0$.
	$kt = \ln(1 + 0.6k)$		
	$t = \frac{1}{k}\ln(1+0.6k)$		
	When $k = 0.1$, $t = \frac{1}{0.1} \ln(1 + 0.6 \times 0.1)$		
	t = 0.582689		
	Sub t into y:		
	$y = \frac{10 + 6k}{k^2} (1 - e^{-kt}) - \frac{10}{k}t$		
	$y = \frac{10 + 6(0.1)}{0.1^2} (1 - e^{-(0.1)(0.582689)}) - \frac{10}{0.1} (0.582689)$		
	y = 1.73109		
	y = 1.73m		

13(a)(i)	$\overrightarrow{HE} = \overrightarrow{HA} + \overrightarrow{AE}$	2	2Mk: Provides
	$= \frac{1}{2} (\overrightarrow{DA} + \overrightarrow{AB})$ $= \frac{1}{2} (\overrightarrow{DB}) \text{ as required.}$		correct solution. 1Mk: Correctly applies one addition rule.
13(a)(ii)	Similarly $\overrightarrow{GF} = \frac{1}{2}(\overrightarrow{DB})$ $= \overrightarrow{HE}$ $\therefore EFGH \text{ is a parallelogram. (One pair of opposite sides of a quadrilateral parallel and equal in length).}$	1	1Mk: Provides correct explanation.

13(b)(i)	ω is the cube root of 1.	1	1Mk: Provides
	$\therefore \omega^3 = 1$		correct answers.
	$\omega^3 - 1 = 0$		
	$(\omega - 1)(\omega^2 + w + 1) = 0$		
	$\therefore \omega^2 + w + 1 = 0$		
13(b)(ii)	$(1-\omega)(1-\omega^2)(1-w^4)(1-w^5)(1-w^7)(1-w^8)$	2	2Mk: Provides
	$= (1 - \omega)(1 - \omega^2)(1 - w^1)(1 - w^2)(1 - w^1)(1 - w^2)$		correct solution. 1Mk: Substitutes
	$= (1 - w)^3 (1 - w^2)^3$		$w^3 = 1.$
	$=((1-w)(1-w^2))^3$		
	$= (1 - w^2 - w + w^3)^3$		
	$=(1+1+w^3)^3$ $[-w^2-w=1 \text{ from (i)}]$		
	$=(1+1+1)^3$ [$w^3 = 1$ from (i)]		
	$=3^{3}$		
427.70	= 27		0) (1 7)
13(c)(i)	It is a circle with centre $(0,2)$ and radius 1.	2	2Mk: Provides correct sketch.
	Im(z)		1Mk: Gives correct
			shape.
	-2 0 2 Re(z) 4		
13(c)(ii)	ne(z)	2	2Mk: Provides
			correct solution.
			1Mk: Identify the
	2 1		minimum $arg(z)$ is a tangent and finds the
			angle.
	2		
	β 1 2		
	For the minimum value of arg(z), it must be a tangent		
	to the circle. Use trigonometry to solve for α and β .		
	We get $\alpha = \frac{\pi}{6}$ and $\beta = \frac{\pi}{3}$.		
	$\therefore \text{ Minimum arg}(z) = \frac{\pi}{3}.$		
	Similarly, maximum $\arg(z) = \frac{2\pi}{3}$.		
	3		

13(d)(i)	$S_{2n-1} = 1 - h + h^2 - h^3 + \dots - h^{2n-1}$ $= \frac{1 - (-h)^{2n}}{1 - (-h)} \qquad \text{(sum of GP)}$ $= \frac{1 - h^{2n}}{1 + h}$ $< \frac{1}{1 + h} \qquad \text{(greater numerator)}$ & $S_{2n} = 1 - h + h^2 - h^3 + \dots + h^{2n}$ $= \frac{1 - (-h)^{2n+1}}{1 - (-h)} \qquad \text{(sum of GP)}$ $= \frac{1 + h^{2n+1}}{1 + h}$ $> \frac{1}{1 + h} \qquad \text{(smaller numerator)}$ $\therefore S_{2n-1} < \frac{1}{1 + h} < S_{2n} \text{as required.}$	2	2Mk: Provides correct solution. 1Mk: Correctly proves one inequality.
13(d)(ii)	$\int_{0}^{x} S_{2n-1} dh < \int_{0}^{x} \frac{1}{1+h} dh < \int_{0}^{x} S_{2n} dh$ $\left[h - \frac{h^{2}}{2} + \dots - \frac{h^{2n}}{2n} \right]_{0}^{x} < \left[\ln(1+h) \right]_{0}^{x} < \left[h - \frac{h^{2}}{2} + \dots + \frac{h^{2n+1}}{2n+1} \right]_{0}^{x}$ $x - \frac{x^{2}}{2} + \dots - \frac{x^{2n}}{2n} < \log_{e}(1+x) < x - \frac{x^{2}}{2} + \dots + \frac{x^{2n+1}}{2n+1}$	2	2Mk: Provides correct solution. 1Mk: Integrates one side correctly, including obtaining $\log_e(1+x)$.
13(d)(iii)	Use $n = 3$ and $x = 0.25$ $0.25 - \frac{(0.25)^2}{2} + \frac{(0.25)^3}{3} - \frac{(0.25)^4}{4} + \frac{(0.25)^5}{5} - \frac{(0.25)^6}{6} < \ln(1 + 0.25) < 0.25 - \frac{(0.25)^2}{2} + \frac{(0.25)^3}{3} - \frac{(0.25)^4}{4} + \frac{(0.25)^5}{5} - \frac{(0.25)^6}{6} + \frac{(0.25)^7}{7}$ $0.223136 < \ln\left(\frac{5}{4}\right) < 0.223145$ $\therefore \ln\left(\frac{5}{4}\right) = 0.2231 \text{ (to 4 s.f.)}$	1	1Mk: Provides correct solution.

14(a)(i)	$P(z) = z^{8} - \frac{5}{2}z^{4} + 1 \text{ and } w \text{ is a root of } P(z) = 0.$ Show that iw and $\frac{1}{w}$ are also roots of $P(z) = 0$. $P(iw) = (iw)^{8} - \frac{5}{2}(iw)^{4} + 1$ $= i^{8}w^{8} - \frac{5}{2}i^{4}w^{4} + 1$ $= w^{8} - \frac{5}{2}w^{4} + 1$ $= 0$ $P\left(\frac{1}{w}\right) = \left(\frac{1}{w}\right)^{8} - \frac{5}{2}\left(\frac{1}{w}\right)^{4} + 1$ $= \frac{1}{w^{8}}(1 - \frac{5}{2}w^{4} + w^{8})$ $= \frac{1}{w^{8}} \times 0$ $= 0$	1	1Mk: Correctly shows the results.
14(a)(ii)	$= 0$ $z^{8} - \frac{5}{2}z^{4} + 1 = 0$ $\therefore 2z^{8} - 5z^{4} + 2 = 0$ $\therefore (2z^{4} - 1)(z^{4} - 2) = 0$ $\therefore z^{4} = \frac{1}{2} \text{ or } 2$ $\therefore \text{ One root is } z = \sqrt[4]{2}$ $\therefore z = \pm \sqrt[4]{2}, z = \pm \sqrt[4]{2}i, z = \pm \frac{1}{\sqrt[4]{2}}, z = \pm \frac{1}{\sqrt[4]{2}}i$	2	2Mk: Provides correct solution. 1Mk: Obtains one correct value for z.

14(b)	Let $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be perpendicular to $\begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} = 0 \qquad \therefore 3x - 2y + z = 0$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$ Solve simultaneously: $4x + 2y = 0$ $y = -2x$ Sub yinto second equation: $x - 8x - z = 0$ $z = -7x$ $\begin{bmatrix} x \\ -2x \\ -7x \end{bmatrix}$ is perpendicular to the two given vectors. Let $x = 1, \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$ is a one particular vector that is perpendicular. For unit vector: $\hat{u} = \frac{1}{\sqrt{1 + 4 + 49}} \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$ $= \frac{1}{\sqrt{54}} \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$ $= \frac{1}{\sqrt{1 + 4}} \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$ $= \frac{1}{\sqrt{1 + 4}} \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$ $= \frac{1}{\sqrt{1 + 4}} \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$ $= \frac{1}{\sqrt{1 + 4}} \begin{bmatrix} 1 \\ -2 \\ -7 \end{bmatrix}$	3	3Mk: Provides correct unit vector. 2Mk: Obtains a general vector that is perpendicular to the given vectors. 1Mk: Obtains correct Cartesian equations.
14(c)	Direction of motion $(+)$ $F=mg$ $m\ddot{y} = -(F+R)$ $2\ddot{y} = -20 - \frac{v^2}{5}$ $\ddot{y} = -10 - \frac{v^2}{10}$		

14(c)(i)	dv	2	2Mk: Correctly
	$\ddot{y} = v \frac{dv}{dy}$		shown.
	$\therefore v \frac{dv}{dy} = -10 - \frac{v^2}{10}$		1Mk: Attempts to -10v
			integrate $\frac{-10v}{v^2 + 100}$.
	$\frac{dv}{dy} = \frac{-10}{v} - \frac{v}{10}$		
	$\frac{dy}{dv} = \frac{-10v}{v^2 + 100}$		
	$\therefore [y]_0^v = \int_8^v \frac{-10v}{v^2 + 100} dv$		
	$y = -5 \left[\ln(v^2 + 100) \right]_8^v$		
	$-\frac{y}{5} = \ln(v^2 + 100) - \ln 164$		
	$-\frac{y}{5} = \ln\left(\frac{v^2 + 100}{164}\right)$		
	$\frac{v^2 + 100}{164} = e^{-\frac{y}{5}}$		
	$\therefore v^2 = 164e^{-\frac{y}{5}} - 100 \text{as required.}$		
14(c)(ii)	Max height occurs when $v = 0$.	1	1Mk: Provides
	$\therefore 0 = 164e^{-\frac{y}{5}} - 100$		correct answer.
	$100 = 164e^{-\frac{y}{5}}$		
	$-5\ln\left(\frac{100}{164}\right) = y$		
	$\therefore y = 5 \ln(1.64) \text{m} \text{ or } 2.47 \text{m}$		
14(c)(iii)	$\ddot{y} = \frac{dv}{dt}$	2	2Mk: Provides
			correct solution. 1Mk: Correctly
	$\therefore \frac{dv}{dt} = -10 - \frac{v^2}{10}$		integrates $\frac{-10}{v^2 + 100}$.
	$\frac{dt}{dv} = \frac{-10}{v^2 + 100}$		$v^2 + 100$
	$\therefore t = \int_{8}^{0} \frac{-10}{v^2 + 100} dv$		
	$=-10\times\frac{1}{10}\left[\tan^{-1}\frac{v}{10}\right]_{8}^{0}$		
	$=\tan^{-1}\left[\frac{v}{10}\right]_0^8$		
	$=\tan^{-1}\left(\frac{4}{5}\right)$		
	∴ Reaches max height after $\tan^{-1}\left(\frac{4}{5}\right)$ seconds.		

14(c)(iv)		1	1Mk: Provides
14(0)(14)	Direction R	1	correct solution.
	of motion		correct solution.
	-		
	(+)		
	, ,		
	$m\ddot{y} = F - R$		
	v^2		
	$2\ddot{y} = 20 - \frac{v}{5}$		
	3		
	$\therefore \ddot{v} = 10 - \frac{v^2}{v}$		
	10		22.51
14(c)(v)	$2\ddot{y} = 20 - \frac{v^2}{5}$ $\therefore \ddot{y} = 10 - \frac{v^2}{10}$ $v\frac{dv}{dy} = 10 - \frac{v^2}{10}$	2	2Mk: Provides
			correct solution.
	$\frac{dv}{dy} = \frac{10}{v} - \frac{v}{10}$		1Mk: Integrates correctly.
	dy v 10		conceny.
	$\frac{dy}{dv} = \frac{10v}{100 - v^2}$		
	1		
	$[y]_0^{\sin 1.64} = \int_0^v \frac{10v}{100 - v^2} dv$		
	$5 \ln 1.64 = -5 \left[\ln(100 - v^2) \right]_0^v$ $\ln 1.64 = \ln(100 - v^2) \ln 100$		
	$-\ln 1.64 = \ln(100 - v^2) - \ln 100$		
	$\ln(100 - v^2) = \ln\left(\frac{100}{1.64}\right)$		
	$v^2 = \frac{64}{1.64}$		
	$v = \frac{8}{\sqrt{1.64}}$ (since $v > 0$)		
	√1.64 (cms , , ,)		
	v = 6.25 m/s		
	∴ Ball is travelling at 6.25 m/s when it returns to the origin.		
15(a)(i)	$\frac{\pi}{4}$	1	1Mk: Provides
	$I_n = \int \tan^n \theta d\theta$		correct proof.
	0 #		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	$I_1 = \int_{\Omega} \tan \theta d\theta$		
	$= \left[-\ln(\cos\theta)\right]_0^{\frac{\pi}{4}}$		
	$= \ln\left[\cos(0)\right] - \ln\left[\cos\left(\frac{\pi}{4}\right)\right]$		
	` ` ´ ⁻		
	$= \ln 1 - \ln \left(\frac{1}{\sqrt{2}} \right)$		
	· · · ·		
	$=0-\ln\left(2^{-\frac{1}{2}}\right)$		
	$=\frac{1}{2}\ln 2$ as required.		

	1	T -	2012
15(a)(ii)	Show that for $n \ge 2$, $I_n + I_{n-2} = \frac{1}{n-1}$. $I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2}\theta (\sec^2\theta - 1) d\theta \text{ , where } n \ge 2$ $= \int_0^{\frac{\pi}{4}} \tan^{n-2}\theta \sec^2\theta - \tan^{n-2}\theta d\theta$ $= \int_0^{\frac{\pi}{4}} \tan^{n-2}\theta \sec^2\theta d\theta - I_{n-2}$ $\therefore I_n + I_{n-2} = \int_0^{\frac{\pi}{4}} \tan^{n-2}\theta \sec^2\theta d\theta$ $= \left[\frac{\tan^{n-1}\theta}{n-1}\right]_0^{\frac{\pi}{4}}$ $= \frac{\left(\tan^{n-1}\theta\right)^{n-1}}{n-1} - \frac{\left(\tan(0)\right)^{n-1}}{n-1}$ $= \frac{1}{n-1} - 0$	2	2Mk: Provides correct proof. 1Mk: Obtains correct integral for $I_n + I_{n-2}$ or uses integration by parts correctly towards I_n or I_{n-2} .
	$=\frac{n-1}{n-1}$		
15()(***)		1	2) (I D : 1
15(a)(iii)	For $0 < \theta < \frac{\pi}{4}$, $0 < \tan \theta < 1$ (since $\tan \theta$ is monotonic increasing on the domain) $0 < \tan^2 \theta < 1$ $0 < \tan^n \theta < \tan^{n-2} \theta$ (since $\tan^{n-2} > 0$) $ \frac{\pi}{4} $ $\therefore \int_0^{\frac{\pi}{4}} \tan^n \theta d\theta < \int_0^{\frac{\pi}{4}} \tan^{n-2} \theta d\theta $ that is, $I_n < I_{n-2}$ $\therefore 2I_n < I_{n-2} + I_n$ (1) $2I_n < \frac{1}{n-1}$ [from (ii)] $ I < \frac{1}{2(n-1)} $ Replacing n by $n + 2$ in (1), we have $ I_{n+2} < I_n $ $ I_{n+2} + I_n < 2I_n $ $ \frac{1}{n+2-1} < 2I_n $ [from (ii)] $ \frac{1}{2(n+1)} < I_n $ Hence $ \frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)} $.	3	3Mk: Provides correct proof. 2Mk: Correctly explains $I_n < I_{n-2}$ and correctly proves part of the compound inequality or proving the compound inequality. 1Mk: Sufficiently explains why $I_n < I_{n-2}$.

15(a)(iv)	$I_{5} = \frac{1}{4} - I_{3} \qquad \text{[from (ii)]}$ $= \frac{1}{4} - \left(\frac{1}{2} - I_{1}\right) \text{[from (ii)]}$ $= -\frac{1}{4} + \frac{1}{2} \ln 2 \text{[from (i)]}$ $= \frac{2 \ln 2 - 1}{4}$ From (iii), we have $\frac{1}{2 \times 6} < I_{5} < \frac{1}{2 \times 4}$ $\frac{1}{12} < \frac{2 \ln 2 - 1}{4} < \frac{1}{8}$ $\frac{1}{3} < 2 \ln 2 - 1 < \frac{1}{2}$ $\frac{4}{3} < 2 \ln 2 < \frac{3}{2}$ $\frac{2}{3} < \ln 2 < \frac{3}{4} \text{as required.}$	2	2Mk: Provides correct proof. 1Mk: Finds I_5 by using the recurrence relation.
15(b)(i)	$x = \sqrt{2}\sin\left(3t - \frac{\pi}{4}\right) + 3\sin(3t)$ $\dot{x} = 3\sqrt{2}\cos\left(3t - \frac{\pi}{4}\right) + 9\cos(3t)$ $\ddot{x} = -9\sqrt{2}\sin\left(3t - \frac{\pi}{4}\right) - 27\sin(3t)$ $= -9\left(\sqrt{2}\sin\left(3t - \frac{\pi}{4}\right) + 3\sin(3t)\right)$ $= -3^{2}x$ In the form $\ddot{x} = -n^{2}x$, where $n = 3$ and centre is 0. The motion is simple harmonic.	2	2Mk: Provides correct solution. 1Mk: Attempts to find \dot{x} and \ddot{x} .
15(b)(ii)	Period is $\frac{2\pi}{3}$. Amplitude: $x = \sqrt{2} \sin\left(3t - \frac{\pi}{4}\right) + 3\sin(3t)$ $= \sqrt{2} \left(\sin\left(3t\right)\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{4}\right)\cos(3t)\right) + 3\sin(3t)$ $= \sqrt{2} \left(\frac{1}{\sqrt{2}}\sin(3t) - \frac{1}{\sqrt{2}}\cos(3t)\right) + 3\sin(3t)$ $= -\cos\left(3t\right) + (1+3)\sin(3t)$ $= 4\sin(3t) - \cos\left(3t\right)$ This can be expressed in the form $A\sin(3t - \alpha)$. $A\sin(3t - \alpha) = A\sin(3t)(\cos\alpha) - A\sin(\alpha)\cos(3t)$ $\therefore A\cos\alpha = 4$ $A\sin\alpha = 1$ $\therefore A = \sqrt{4^2 + 1^2}$ $= \sqrt{17}$ $\therefore \text{ Amplitude is } \sqrt{17}$	3	3Mk: Provides correct period and amplitude. 2Mk: Obtains correct period and significant progress towards amplitude or correct amplitude. 1Mk: Obtains correct period or significant progress towards amplitude.

15(b)(iii)	From (ii):
	$A\cos\alpha=4$
	$A\sin\alpha=1$
	$\tan \alpha = \frac{1}{4}$
	$\alpha = \tan^{-1}\left(\frac{1}{4}\right)$
	$\tan \alpha = \frac{1}{4}$ $\alpha = \tan^{-1} \left(\frac{1}{4}\right)$ $\therefore \sqrt{2} \sin \left(3t - \frac{\pi}{4}\right) + 3\sin(3t) = \sqrt{17} \sin \left(3t - \tan^{-1} \left(\frac{1}{4}\right)\right)$
	Reaches the origin when $x = 0$.
	Reaches the origin when $x = 0$. $\sin\left(3t - \tan^{-1}\left(\frac{1}{4}\right)\right) = 0$
	$3t - \tan^{-1}\left(\frac{1}{4}\right) = 0, \pi, 2\pi, \dots$
	$3t = 0 + \tan^{-1}\left(\frac{1}{4}\right), \pi + \tan^{-1}\left(\frac{1}{4}\right), \dots$
	$t = \frac{\tan^{-1}\left(\frac{1}{4}\right)}{3}, \frac{\pi + \tan^{-1}\left(\frac{1}{4}\right)}{3}, \dots$
	t = 0.081659, 1.128857, Using radians mode.
	$\therefore t = 0.0817$ s is the first time the particle is at the origin.
	1 the first time time particle is at the original

2Mk: Provides correct solution. 1Mk: Obtains correct value for α or uses x = 0 to find an expression for time.

3 Mk: Provides correct solution. 2Mk: Integrates correctly to get $2(\tan \theta - \theta) + C$. 1Mk: Uses a valid substitution.

16(b)		3	2Mk: Provides correct proof. 1Mk: Identifies $\underline{m} \cdot \underline{n} \le \underline{m} \underline{n} $ or obtains $a^2 + b^2 + c^2 \ge ab + bc + ca$ by algebraic method.
10(c)	LHS = $\left(\frac{a}{b+c} + 1\right) + \left(\frac{b}{a+c} + 1\right) + \left(\frac{c}{a+b} + 1\right) - 3$ = $\frac{a+b+c}{b+c} + \frac{a+b+c}{a+c} + \frac{a+b+c}{a+b} - 3$ = $(a+b+c)\left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}\right) - 3$ = $\frac{1}{2} \times ((b+c) + (a+c) + (a+b)) \times \left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}\right) - 3$ = $\frac{1}{2} \times (3 \times \sqrt[3]{(b+c)(a+c)(a+b)}) \times \left(3 \times \sqrt[3]{\frac{1}{(b+c)(a+c)(a+b)}}\right) - 3$ (by AM/GM with $n = 3$) = $\frac{9}{2} \times \sqrt[3]{1} - 3$ = $\frac{3}{2}$ as required.	3	correct solution. 2Mk: Shows significant progress. 1Mk: Makes a valid attempt.
16(d)(i)	$y = x^{k} + (c - x)^{k}$ $\frac{dy}{dx} = kx^{k-1} - k(c - x)^{k-1}$ stationary points occur when $\frac{dy}{dx} = 0$ $kx^{k-1} - k(c - x)^{k-1} = 0$ $x^{k-1} = (c - x)^{k-1}$ $\left(\frac{c - x}{x}\right)^{k-1} = 1$ $\frac{c - x}{x} = \pm 1$ (note: if $k - 1$ is even it is possible that $c - x$ is < 0) $\frac{c - x}{x} = -1$ or $\frac{c - x}{x} = 1$ $\frac{c}{x} - 1 = -1$ $\frac{c}{x} = 0$ $x = \frac{c}{x}$ not possible as $c > 0$ $x = \frac{c}{2}$ y has a single stationary point at $x = \frac{c}{2}$	2	2Mk: Provides correct solution by considering both cases. 1Mk: Finds the stationary value of $x = \frac{c}{2}$.

16(d)(ii)	$\frac{d^2y}{dx^2} = k(k-1)x^{k-2} + k(k-1)(c-x)^{k-2}$	1	1Mk: Provides correct solution.
	when $x = \frac{c}{2}$; $\frac{d^2y}{dx^2} = k(k-1)\left(\frac{c}{2}\right)^{k-2} + k(k-1)\left(\frac{c}{2}\right)^{k-2}$		
	$= 2k(k-1)\left(\frac{c}{2}\right)^{k-2}$		
	If $0 < k < 1$ then $k(k-1) < 0$ and if $k > 1$ then $k(k-1) > 0$		
	Thus if $k < 1$, y has a maximum at $x = \frac{c}{2}$ and		
	if $k > 1$, y has a minimum at $x = \frac{c}{2}$.		2.8
16(d)(iii)	when $x = \frac{c}{2}$; $y = \left(\frac{c}{2}\right)^k + \left(\frac{c}{2}\right)^k$	3	3Mk: Provides correct solution.
	$=2\left(\frac{c}{2}\right)^k$		2Mk: Uses part (ii) to show that either
	when $x \neq \frac{c}{2}$; for $0 < k < 1$; $x^k + (c - x)^k < 2\left(\frac{c}{2}\right)^k$		$x^{k} + (c-x)^{k} > 2\left(\frac{c}{2}\right)^{k}$
	for $k > 1$; $x^k + (c - x)^k > 2\left(\frac{c}{2}\right)^k$		or
	Let $c = a + b$ where $a > 0$, $b > 0$ and $a \ne b$		$x^k + (c - x)^k < 2\left(\frac{c}{2}\right)^k$
	Thus 0 < a < c Case 1: 0 < k < 1;		depending on the value of k.
	$a^k + (c-a)^k < 2\left(\frac{c}{2}\right)^k$		1Mk: Finds the value of y when $x = \frac{c}{2}$.
	$a^k + (a+b-a)^k < 2\left(\frac{a+b}{2}\right)^k$		or y when x 2.
	$a^k + b^k < 2\left(\frac{a+b}{2}\right)^k$		
	$\frac{a^k + b^k}{2} < \left(\frac{a+b}{2}\right)^k$		
	Case 2: If k > 1;		
	$x^k + (c - x)^k > 2\left(\frac{c}{2}\right)^k$		
	$a^k + b^k > 2\left(\frac{a+b}{2}\right)^k$		
	$\frac{a^k + b^k}{2} > \left(\frac{a+b}{2}\right)^k$		
	End of Paper		